The Climate-Adapted Seed Tool: Using Provenance Tests to Inform Oak Seed Transfer in a Changing Climate

Joe Stewart Postdoc, UC Davis

Outline

- Climate-Adapted Seed Tool (CAST)
- Example from conifer provenance tests (typical local adaptation to climate)
- Early results from Quercus lobata provenance test

Provenance Test Data Sets

Species	abco	abma	acma	alru	pico	pije	pimo	pien	pipo	pisi	potr	psme	qulo	thpl	tshe
N. Provenances	14	9	42	47	184	3	145	182	42	30	180	77	95	10	57
N. Sites	5	5	3	2	60	3	7	26	10	9	3	6	2	6	5
N. Trees	9.1k	3.3k	13.8k	4.1k	70.7k	4.6k	22.1k	110k	10k	31.9k	9k	25.3k	7k	4.1k	42.7k
Last Meas. Age [field-yrs]	18-26	18-26	10	10	20-35	41	16	10-15	8-80	10-15	3	17-100	6	15	5-25
Planting Yr(s)	1976- 1979	1976- 1979	2008- 2009	1995	1974	1973	1988	2000- 2005	1910 - 1992	2000	2000- 2007	1915- 1975	2014- 2015	1991	1993- 2005

Age 32 lodgepole pine data (Illingworth+)

- 44 sites
- 182 Provenances
- ~50,000 trees

Photo Courtesy Greg O'Neill

Age 32 lodgepole pine data (Illingworth+)

- 44 sites
- 182 Provenances
- ~50,000 trees

Photo Courtesy Greg O'Neill

Effects of tree age on transfer functions

3-Dimension Ensemble Transfer Functions

Model	Bayesian Stacking Weight (LOO)	Δ LOO IC	LOO R2
MAT & MAP	0.319	111.71	0.369
MCMT & MAP	0.195	0	0.400
TD & MAP	0.470	34.31	0.388
MWMT & MAP	0.016	495.77	0.266

MAT: Mean Annual Temperature

MCMT: Mean Cold-Month Temperature

MAP: Mean Annual Precipitation

MWMT: Mean Warm-Month Temperature

Yao et al. 2018. Bayesian Analysis: 13:917–1007.

Crisis and Opportunity

- California forests are not adapted to rapidly changing climate conditions.
- With <u>climate-adapted seed transfer (CAST)</u> we can take proactive steps to adapt forests to climate change.
- CAST can make a huge positive impact on forest health and net CO2 emissions.

% Decline in Productivity Without CBST

-10

-30 -40 -50 Conservative Estimates of Impact of Climate Adapted Seed Transfer

If deployed across private land in CA starting in 2021:

	By 2050	By 2060
Additional CO2 Sequestered [million tonnes/yr]	2.3	4.1
Market Value of Additional CO2 Sequestered [million USD/yr]	\$77	\$138
Percent of net 2018 CA GHG Emissions [%/yr]	.5%	1%
Additional Timber Production [<i>million</i> board-ft/yr]	142	256

Differences between species (provisional analyses)

Quercus lobata Provenance Test

- \sim 7,000 trees planted
- 95 provinces (670 precise seed source locations)
- 2 planting locations
 - Institute for Forest Genetics (IFG), Placerville, CA
 - Out-Planted Dec 2014
 - Chico Seed Orchard
 - Out-Planted Jan 2015
- Analyses focus on fall 2021 measurements

Current limitations:

- I do not yet have seed source IDs for trees that died prior to 2017, thus cannot yet look at mortality as function of climate transfer.
- Heights were not measured for trees over 2.5 m tall, so I had to estimate them from allometric relationship with DBH.

Results from Browne et al. 2019 —

Based on 2017 measurements after 3 field-years in the ground.

Hypothesized: **Rising emissions** Last Glacial Current Maximum (21 kya) climate (RCP 8.5) H1: Local adaptation 0.85 H2: Adaptational lag Relative growth rate (cm cm⁻¹ yr ⁻¹) 0.75 Growth rate 0.65-0.55 0 7.5 -2.5 0.0 2.5 5.0 -5.0 T_{max} difference (°C) T_{max} difference (°C) Planted in colder Planted in warmer Planted in colder Planted in warmer climate than origin climate than origin climate than origin climate than origin

Observed:

Seed Source Climates (N = 670; 1950-1980)

Planting Site Climates (N= 2; 2015-2021)

Tmax

6 Field-Years

Similar result to Browne et al (2019) for RGR at 3 fieldyears.

Mean Cold-Month Temp.

6 Field-Years

Local Adaptation: Aligns with typical pattern of provenance tests.

QULO 2-Dimension Ensemble Transfer Functions w/ adaptation lag

Model	Bayesian Stacking Weight (LOO)	Shape
MWMT	0.585	Monotonic
MCMT	0.239	Non-monotonic (adapted to recent environment)
Tmax	0.131	Monotonic
MAT	0.045	Monotonic
TD	0	Monotonic
IMAP	0	Monotonic

MCMT = Mean Cold-Month Temperature

MWMT = Mean Warm-Month Temperature

- Tmax = Mean Ann. Daily Maximum Temperature (Browne et al. 2019)
- MAT = Mean Ann. Temperature
- TD = Temperature Differential, aka seasonality (MWMT MCMT)
- IMAP = log(Mean Ann. Precipitation)

Thanks!

LA Moran Reforestation Center

Jessica Wright US Forest Service

Victoria Sork UCLA

Marissa Ochoa UCLA

Courtney Canning USFS

Greg O'Neill BC Forest Service

Jimi Scheid CALFIRE

Stewart McMorrow CAL FIRE

For species with adaptation-lag, should we:

(A) Select seeds to optimize growth, survival, fitness (remove adaptation lag)?

(B) Select seeds to match historical climate of the seed source to the climate they will grow in (maintain historical level of adaptation lag)?

(C) Both/somewhere in between/bet hedging?